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Abstract-T he nature of the diffusion velocity for ordinary diffusion is carefully examined. It is shown that 
its physical character is different to the forced diffusion velocity in that it is not necessary to associate 
diffusion stresses and kinetic energy with ordinary diffusion. As a consequence, momentum and energy 
conservatior equations based on coexisting-continua models found in the literature are shown to be of 
doubtful utility, and are often incorrectly interpreted. In addition, a widely seen form of the thermal energy 
equation is shown to be in error. A single continuum model is proposed for non-ionized gas mixtures that 
is adequate for practical use. An appropriate form of the coexisting-continua model conservation equations 
is given for Iplasma when forced diffusion is the dominant diffusion mechanism. 0 1998 Elsevier Science 

Ltd. All rights reserved. 

I, INTRODUCTION 

The conservation equations for gas mixtures in com- 
mon use are derived from coexisting-continua or kin- 
etic-theory model:,. In both models, the phenomena 
of diffusion are introduced by defining the absolute 
velocity of a chemical species to have a component 
due to diffusion, called the diffusion velocity, Oi. The 
resulting derivations of species and mass conservation 
equations are straightforward. However, when using 
the coexisting-continua model to derive the mixture 
momentum conservation equations, momentum 
fluxes -Cip,0,9i iappear that are interpreted as a 
‘diffusion stress tensor’. Similarly, the mixture energy 
equation contains terms that are associated with a 
‘kinetic energy of diffusion’, Ci f pi@. Kinetic-theory 
models yield conservation equations that contain 
similar terms, either explicitly or implicitly. Often 
these quadratic diffusion terms are concealed by new 
definitions, are discarded based on scaling arguments, 
or are simply ignored. 

In general, the diffusion velocity has four com- 
ponents: these are associated with ordinary, forced, 
pressure, and thermal diffusion. It will be shown that 
the diffusion velocities for ordinary and forced 
diffusion are fundamentally different. The former is 
an arbitrarily defined average value for molecules in 
thermal motion ; the latter is a ‘drift’ velocity that can 
be specified as a component of the velocity of each 
molecule. The result is that quadratic terms involving 
these velocities h,lve different physical meanings for 
ordinary and forced diffusion. It will be shown that 
the only practical use of the ordinary diffusion velocity 
is in a product with a measure of species concentration 
to give a mass, mole or molecular flux. There is no 
need to define quantities such as the diffusion stress 
tensor and kinetic energy of diffusion for ordinary 

diffusion since they have no separate existence. The 
diffusion pressure is a portion of the thermodynamic 
pressure; the kinetic energy of diffusion is a portion 
of the thermodynamic internal energy. These terms 
are often said to be discarded based on scaling argu- 
ments when, in fact, they have not been discarded. Use 
of thermodynamic pressure ensures that the diffusion 
pressure for ordinary diffusion is included. Use of 
the thermodynamic internal energy ensures that the 
kinetic energy of ordinary diffusion is included. On 
the other hand, the forced diffusion velocity does give 
diffusion stresses and a kinetic energy of diffusion that 
are distinct physical quantities. If these terms are to 
be considered, they need to be specified separately. 
The kinetic energy of forced diffusion is energy in 
addition to the thermodynamic internal energy. 

In Section 2 the physics of diffusion is discussed, 
and in Section 3 some definitions from the kinetic 
theory of gases are used to illuminate the simple phys- 
ics of Section 2. In Section 4 a brief development of a 
coexisting-continua model of gas mixtures is given, 
followed by an evaluation of the model and comments 
on the relevant literature. Section 5 recommends new 
continuum models for gas mixtures, first for non- 
ionized gas mixtures and then when forced diffusion 
is dominant. Finally, in Section 6 the nature of the 
ordinary-diffusion velocity in continuum models is 
revisited. 

2. THE PHYSICS OF DIFFUSION 

2.1. Continuum model of ordinary diffusion 
When concentration gradients exist in a gas 

mixture, the random (thermal) motion of molecules 
causes ordinary diffusion to occur. In a continuum 
model, ordinary diffusion in a binary mixture can be 
described by Fick’s law in the form, 
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NOMENCLATURE 

rate of mass gain 
peculiar velocity relative to average 
species velocity 
mean thermal speed (8RT/n)‘12 
peculiar velocity relative to mass 
average velocity 
substantial derivative 
multicomponent diffusion coefficient 
thermal diffusion coefficient 
binary diffusion coefficient 
total energy 
elementary electric charge 
electric field strength 
external force per unit mass 
velocity distribution function 
gravitational acceleration 
enthalpy 
mass diffusion flux 
molecular diffusion flux 
thermal conductivity 
Boltzmann constant 
Knudsen number 
mean free path 
length scale 
mass fraction 
mass of a molecule 
absolute mass flux 
number density 
pressure 
heat/energy flux 
internal (volumetric) heat generation 
rate 
mass generation rate due to 
homogeneous reactions 
gas constant 
Reynolds number 
Schmidt number 
time 
temperature 
internal energy 
velocity 

?J molecule absolute velocity 
V volume 
x mole fraction 
Z spatial coordinate. 

Greek symbols 

i friction force 
Ic bulk viscosity 

P viscosity ; mobility of an ion 

5 rate of energy dissipation due to 
interaction stresses 

P density 
0 total stress 

; 

viscous stress 
rate of energy accumulation 

@ dissipation function. 

Subscripts 
i species i 

s, 
subsurface, adjacent to a solid 
particle 

1, 2 species 1, 2. 

Superscripts and overscores 
C conduction 
CC, Chapman and Cowling 
D diffusion 
DC diffusional conduction (Dufour effect) 
FD forced diffusion 
OD ordinary diffusion 
TD thermal diffusion 
W Woods 

relative to the mass average velocity 
* relative to the molecule average 

velocity ; 
*, +, 7, tr various definitions of internal 

energy [see equations (44), (45), (48) and 

(49)l 
partial property not equivalent to its 
pure gas counterpart. 

j, = -p9,2Vm,. (1) 

The diffusion velocity relative to the mass average 
velocity 8, can be defined by the relation 

j, = ~~0,. (2) 

Comparing equations (1) and (2), 

8, = -5??,,Vlnm,. (3) 

Consider now the simple situation depicted in Fig. 1. 
In the connecting tube, steady one-dimensional 
diffusion takes place in an isothermal mixture of two 

1 

species of essentially equal molecular weights (e.g. CO 
and NJ. The mixture may be taken to be stationary. 
The gradient Vm, is constant along the tube, as is the 
flux j,, but ?, varies nonlinearly along the tube. Since 
pI = p at z = 0, 8, = j,/p at z = 0, and, since p, -+O 
as z -+ L, 8, -+ co as z --f L. If the diffusion velocity G, 
were a relevant physical velocity we would be sur- 
prised and concerned by such behavior. In a con- 
tinuum model, however, ?I is an artificial velocity 
defined by equation (2), in what may be viewed as a 
flow model of ordinary diffusion. Only the product 
p,?, = j, has physical significance. 
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0 z L 
Fig. 1. Steady one-dimensional interdiffusion of two species with equal molecular weights. 

The diffusion velocity can be very large in many 
familiar physical situations. For example, consider 
oxidation of solbd carbon by oxygen to form carbon 
monoxide. At suliiciently high temperatures, the reac- 
tion is diffusion #controlled and chemical equilibrium 
data indicate that the partial density of oxygen adjac- 
ent to the carbon, po2,s, is very small. The diffusion 
flux of oxygen to the surface is finite ; thus, 
v~,,~ = _i02,s/~02,S is very large. Similar situations occur 
in most diffusion-controlled reactions: the flux of 
reactant to the surface is finite but the diffusion vel- 
ocity at surface is very large. 

2.2. Molecular model of ordinary diffusion 
In anticipation of dealing with kinetic theory 

models, consider the molecular equivalent of equation 
(1). Mass and molecule average velocities are equal 
for equal molecular weights, thus we can write 

3, = -M28,2Vn,. (4) 

Also, dividing equation (2) by the mass of a molecule 
gives 

4, = J-f,o,. (5) 

On a molecular level, the behavior of 8, in Fig. 1 is 
simply explained. As Jlr, decreases, the number of 
‘carriers’ for the constant diffusion flux 9, decreases : 
hence the diffusion velocity associated with these mol- 
ecules must increase. 

A molecular equivalent of the situation depicted in 
Fig. 1 was investigated by G. A. Bird using the direct 
simulation Monte Carlo (DSMC) method [l]. The 
purpose was to calculate the self-diffusion coefficient 
of argon. Identical argon molecules were designated 
species 1 and 2. The number density was 
N = 1.4 x 10” mm3 and temperature T = 273 IS 
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(P z l/20 000 atm). A plane layer 1 m thick was con- 
sidered with pure species 1 adjacent to the plane at 
z = 0, and pure species 2 adjacent to the plane at 
z=L=I m. The initial condition was 
JV, = JV, = 0.5 and the steady state solution 
obtained is shown in Fig. 2. Concentration ‘jumps’ 
are in evidence at z = 0 and z = 1 m due to the low 
pressure (Kn 2: 0.02). The diffusion velocities were 
calculated by sampling and averaging: values of 160 
m s-’ are seen as z --) 0 and z -+ 1 m for 0, and O,, 
respectively. 

But what is the relevance of these diffusion vel- 
ocities? The argon molecules are in random motion 
characterized by the average molecular speed 

z = (SRT/Z)’ 2. Ordinary diffusion is a net flux of 
molecules that occurs when there is a concentration 
gradient: at any plane z = constant there are more 
molecules of species 1 crossing from left to right than 
from right to left. This flux is constant and inde- 
pendent of the local number fraction of species, n, ; it 
depends only on the gradient of n,. The diffusion 
velocity C, = .Y,/.Nn, increases with z as n, decreases, 
but the intrinsic thermal molecular motion does not 
change. All the molecules are identical and the gas is in 
equilibrium. The mixture as a whole has a Maxwellian 
velocity distribution that does not vary with Z. The 
diffusion velocities are non-zero because they belong 
to subsets of molecules that. on an average, happen 
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Fig. 2. Self-diffusion of argon : results of G. A. Bird’s DSMC calculations. 
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to be moving from left to right (species 1) or right to 
left (species 2). As a consequence there can be no 
pressure or kinetic energy associated with the diffusion 
velocities that is not already accounted for in the ther- 
modynamic pressure and internal energy. In Section 
3 we will return to this issue. 

2.3. Forced dzffusion 

As an example, consider an electric field applied to 
an ionized gas. Negatively charged electrons diffuse 
to the anode while the positively charged ions migrate 
to the cathode. Thl: molecular flux of a singly-ionized 
species is 

Y” = piEn; (6) 

where E is the electric field strength or voltage gradi- 
ent, and pi is the mobility of species i. The Nernst- 
Einstein equation is used to relate mobility to the 
effective binary diffusion coefficient, 

Notice that p,E has the units of velocity and is the 
forced diffusion, or cataphoretic velocity, ?r”. It is a 
‘drift’ velocity that can be assigned to all the molecules 
of species i as an average over an appropriate time 
scale. It is not a component of the thermal velocity of 
the molecules. The forced diffusion velocity can be 
very large: for example, cadmium ions in a helium- 
calmium laser have a forced diffusion velocity of 
- 3000 m s-‘. There are momentum fluxes and kinetic 
energy associated with the forced diffusion velocity 
that are not accounted for in the thermodynamic 
pressure and internal energy. 

In contrast, the diffusion velocity for ordinary 
diffusion cannot be assigned as a ‘drift’ velocity to the 
molecules: if this is done, a simple mean-free-path 
kinetic theory argument will show that ordinary 
diffusion would be accounted for twice. 

3. ADVANCE.D KINETIC THEORY MODELS 

In kinetic theory the Boltzmann equation describes 
the change of the velocity distribution functionf. It is 
common practice to derive the transport equation (or 
equation of change, or conservation equation) for a 
molecular property 4 from the Boltzmann equation. 
In the literature we find two distinct formulations 
of transport equations. One is due to Chapman and 
Cowling [2], and is also presented by Hirschfelder, 
Curtiss and Bird [3] and Williams [4]. The other is due 
to Woods [5, 61. Both formulations commence by 
defining the linea-r velocity V, of a molecule of species 
i. The absolute velocity of species i, present at number 
density Jf,, is defined as 

(8) 

wheref;(r,, vi, t) is the velocity distribution function of 
species i. The mass average velocity is then defined as 

v = $i+qv. 

The diffusion velocity of species i with respect to the 
mass average velocity is 

8, = v, -v. (10) 

The molecule peculiar velocity is defined in two ways. 
Chapman and Cowling (CC) define it relative to mass 
average velocity, 

c, = V,_V. (11) 

Woods (W) defines it relative to the absolute velocity 
of the species, 

cj = uj-vi. (12) 

For a single component gas we set 4 = m, MC and 
$.& to obtain transport equations for mass, momen- 
tum and energy. In the CC formulation for a gas 
mixture we set f =f; and 4 = mi, m,C, and &C~ to 
give transport equations for each species. These sets of 
equations are immediately summed to give transport 
equations for the mixture. In the W formulation we 
set 4 = mi, mici and $JYL,~~ to obtain transport equa- 
tions for each species. These equations are then 
manipulated before summing to give transport equa- 
tions for the mixture. The difference in the for- 
mulations is in the choice of definition of the peculiar 
velocity : the two definitions are related as : 

c; = c, +e,. (13) 

Both formulations give the same species equations ; 
the differences arise in the momentum and energy 
equations. To explain the difference we will look at 
the energy of the mixture. We subtract the kinetic 
energy associated with the mass average velocity, 
namely $v2, and examine the W formulation treat- 
ment of the remaining energy. Woods defines a mix- 
ture energy of a purely thermodynamic nature for 
monatomic molecules as 

1 
puw = cp,uw = +,Fy 

and a mixture energy relative to the mass average 
velocity (as used in the CC formulation) 

puce = -$pgy. 

Using Ci = c,+9, we obtain 

p&C = pu”+~;p,t;’ = ~u~+K.E.~ (16) 

where K.E.” = X,fp$ is the kinetic energy associ- 
ated with the diffusion velocities. Woods goes on to 
state ([5] p. 79), “It is usual to take puce as defining the 
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energy density, but as will be explained later (Sections 
23.5, 53.2) in process thermodynamics this mixing 
together of energy due to purely random motions 
and energy due to the often controllable relative fluid 
velocities is sometimes unsatisfactory.” To examine 
this statement by Woods let us return to G. A. Bird’s 
argon self-diffusion problem of Section 2.2. 

The mixture of molecules 1 and 2 is a stationary 
pure gas in thermodynamic equilibrium. The internal 
energy is 

pu = Cfp,c = puce (17) 

and is uniform 0 < z < L. That is, the thermodynamic 
internal energy is identified as the kinetic energy of 
the monatomic molecules, which have a Maxwellian 
velocity distribution that is associated with the ther- 
mal agitation of the molecules. Also from equations 
(15) and (16) 

puce = &li~+~ipi~~ = 
i2 ,2 

~u~+K.E.~ (18) 

There is clearly no extra energy associated with ordi- 
nary diffusion ; the K.E.D is portion of the ther- 
modynamic internal energy of the gas. The sub- 
division of internal energy in equation (18) is 
unnecessary; it is also troublesome because K.E.” + 
a as pi + 0, and puw has no physical meaning except 

as the difference between pu and K.E.D. Similar con- 
siderations apply to the pressure. The diffusion pres- 
sure is defined as 

but is simply a portion of the thermodynamic 
pressure. There is no extra pressure associated with 
ordinary diffusion. 

A quite different situation is obtained when we con- 
sider forced diffusion. Equation (6) defines a forced 
diffusion velocity CB” = p,E for an electric field 
applied to an ionized gas, and this velocity is a ‘drift’ 
velocity possessed by all molecules of species 1. In 
situations where forced diffusion is the only diffusion 
mechanism of concern, the subdivision of internal 
energy in equation (16) is useful if the kinetic energy 
of diffusion is defined for forced diffusion only, 

K.E.D = Z;p,v^;D2. 

This issue will be returned to in Section 5.2. 

(20) 

The important point is that the ordinary diffusion 
velocity and forced diffusion velocity are essentially 
different physical quantities. No problems are en- 
countered when these velocities are added in the spec- 
ies conservation equation (because, in fact, it is 
diffusion fluxes that are added). On the other hand, a 
number of difficulties arise if we attempt to add these 
velocities in deriving momentum and energy con- 
servation equations, since quadratic terms in diffusion 

velocity are obtained. This issue is discussed in Section 
4. 

4. COEXISTING-CONTINUA MODELS OF GAS 
MIXTURES 

Currently used continuum derivations of the con- 
servation equations for a multicomponent chemically 
reacting gas mixture are based on models that imagine 
the components of the mixture to be coexisting con- 
tinua. Thus all components (species) can sim- 
ultaneously exist at each space point. Each component 
is taken to have a partial density p,, velocity vector v,, 
partial pressure p, and internal energy z&. The tilde 
overscore indicates a property that will generally 
prove to be different to its pure fluid counterpart. 
Some authors, e.g. Woods [6] derive conservation 
equations for each component separately, including 
terms that account for interactions between continua. 
These equations are then manipulated and summed 
to obtain ‘one-fluid’ equations, i.e., conservation 
equations for the mixture. Other authors, e.g., Wil- 
liams [4] immediately write down conservation equa- 
tions for the mixture to avoid specification of all the 
interaction terms. The presentation that follows is 
similar to that of Woods, but there are significant 
differences. Only pertinent results will be given here : 
for more complete derivations the reader is referred 
to Woods [6] or Williams [4]. 

4.1. Species and mass conservation 
In this derivation and the derivations that follow, 

the conservation principle will be stated for a control 
volume V, and followed by the resulting differential 
equation. 

Conservation of species i requires that the time rate 
of storage of species i within V plus the net rate of 
outflow across the boundary surface S equal the pro- 
duction rate of species i within V due to chemical 
reactions. Hence, 

dP1 at + v * pivi = i,. (21) 

Writing the absolute velocity vi as the sum of the 
mass average velocity v and diffusion velocity qi, and 
introducing the diffusion flux j, = piti gives 

$ +V*(p,v) = -V-j,+?,. (22) 

Defining a, [kg rn-’ s] as the total rate at which con- 
tinuum i gains mass from continuum j due to one or 
more chemical reactions (or ionization processes) and 
introducing the substantial derivative gives the alter- 
native form, 

Dpi 
ot +p,V*v = -V*ji+C(a,-a,,). (23) 

/ 

Summing over all species gives the mass conservation 
equation as 
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ap z+v*pv=o. (24) 

4.2. Momentum conservation 
The stress tensor for continuum i is defined as 

8; = - piz+ f, (25) 

where 0: is the viscous stress in continuum i. The inter- 
action forces between continua are viewed as pro- 
ducing a net body force, and it is written as p&, 
where 4, is the friction force per unit mass of species i 
resulting from the relative motion of all other species 
past species i. We shall write 

where iii is the force acting on species i due to species 
j, per unit volume 

Newton’s second law of motion applied to con- 
tinuum i requires that the rate of change of momentum 
of the fluid within the volume plus the net rate of 
outflow of momentum equal the sum of the surface 
integral of the stress vector, the volume integral of the 
net volume forces, and the volume integral of the net 
rate of change 0.f momentum associated with pro- 
duction of species i; hence the continuum momentum 
equation is 

;(pivi) + v * pivjvi = v * a"i+pi(f,+ii)+C(a;jVj-a,iV,). 
1 

(27) 

Using the species conservation equation, an alter- 
native form is derived as 

pi$vi = v.Bi+pi(f,+r,)+Ca,(vj-v,) (28) 
I 

where 

;=;+,/v. 
Summing equation (27) over all species gives the 

mixture momentum conservation equation. The net 
rate of production of momentum due to all reactions 
is zero, and the sum of the interaction forces between 
continua add to zero by Newton’s third law of motion. 
From equation (25) 

xv-a, = -vF+v.f 

where a prescription for the mixture viscosity is 
implied in writing t = Z&9,. Then the result of the 
summation is 

~~Piv~+v~&‘iV,Vi= -VP"+V*f+&,f,. (29) 

Introducing vi = v+8, and using the mass con- 

servation equation with the relation I&pi? = Fiji = 0, 
allows equation (29) to be rewritten as 

p~+v.~p,f,fi = -VP”+V*4+Xpifi. (30) 

Defining the diffusion stress tensor Z” = -Zipi+i9j, 
equation (30) becomes 

Dv 
p- = -VP”+V*[5+zD]+zpifi. 

Dt (31) 

Notice that the diagonal components of the 
diffusion stress tensor give rise to the diffusion 
pressure. 

PD = ;~pP?. (32) 

4.3. Energy conservation 
The first law of thermodynamics applied to con- 

tinuum i requires that the rate at which energy 
accumulates in the control volume equal the net inflow 
of energy across the boundary, plus heat transfer 
across the boundary, plus the work done on the con- 
tinuum by pressure, viscous stresses and volume 
forces, plus energy added due to production of species 
i plus energy added due to a difference in temperatures 
T, and <, plus dissipation heat generated by the inter- 
action stresses, plus flow work required to introduce 
newly produced species i into the continuum, plus 
other internally produced energy. The resulting total 
energy conservation equation is 

$,(,+ fv:)+v.pi (c:+ ;,+, 
= -v.B,+v.~.i.Bi]+piVi(fi+~i) 

+T [$tj+C,+a,, (cl+ 2 + :1:> 

-aii (C,+ : + ivF)]+Qvi (33) 

where iji is a contribution to conduction and 
diffusional conduction (Dufour effect) by the con- 
tinuum i, &, is the rate at which energy is accumulated 
in continuum i if T; # Fi, and <,, is the rate of energy 
dissipation due to the interaction stresses. 

As was done for the momentum equation, the 
species conservation equation can be used to obtain 
the alternative form 

D, 1 
p,,, ui+jvt ( > = -v*i&+v*[v,‘Bi] 

+p;V,'(fj+[,)+C 4 +5' +a-- iij+’ + iv; 

i [ ” ” lJ( ; 

1 - 
- 0; - - uf 

2 > .I -aji: +Q+ (34) 
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Consistent with the postulate that continuum i has 
a velocity v,, we form its mechanical energy equation 
by taking the scalar product of v, with equation (28), 

= v, . [V * &,I + P,V, -(f, + i,) 

+~a&,*v,-v,Z>. (35) 
i 

Subtracting equation (35) from equation (34) gives 

+T {ul,+i.,+a,, [iZ,+ 2 

-(ii+ $+ ;(v,-v,)~]}+& (36) 

which in analogy to a pure fluid we will term a ‘ther- 
mal’ energy equation. Notice that there are no work 
terms in this energy equation ; the work term 
p,v,(f,+ &) in the total energy equation gets subtracted 
out by the corresponding term in the mechanical 
energy equation. 

Mixture energy equations are useful only when all 
the continua are in thermal equilibrium, that is z = F, 
for all i; then, from its definition, &, = 0. In summing 
equation (33) over all species, the work done by and 
dissipation due to the continua interaction forces sum 
to zero, as do the reaction terms. Then, with 
eV = Zey, and C& = gct_qDC the result is 

= -v~(~C+~“C)+V.~+v~[v~Zi]+v~‘Ce,~~ 

+pv*f+Cji*f,+Q.. (37) 

Using the mass conservation equation and intro- 
ducing the substantial derivative gives 

+V*pCm,(v*OJ0, 

= V~(~‘+(TDc)-V*~j,u,-V~~~,~ 

+V.[C9;z;]+pv.f+Cji.f,+e,. (38) 

A mixture ‘thermal’ energy equation is obtained 
by summing the continua thermal energy equations, 
equation (36). The result is 

pg = -~v*v-~*(~~+(i~‘)-v* Cj,ci 

Cl j 

-~lqv,+p@+p@+& (39) 

where fi@ = - z - Vv and P@’ = -&z,. VO,. 

4.4. Evaluation of the coexisting-continua model 
The momentum and energy conservation equations 

derived using coexisting-continua models have a num- 
ber of serious shortcomings. Three issues of particular 
concern are as follows : 

(1) 

(2) 

(3) 

The equations are obtained in terms of partial 
properties that do not have their usual meaning 
for pure fluids. 
The total energy equations are unwieldy due to 
the large number of terms related to the kinetic 
energy of diffusion. 
The ‘thermal’ energy equation does not express 
conservation of all the thermal energy of the 
mixture. 

These issues will now be discussed in turn. 
4.4.1. Partiulproperties. For example, consider the 

derivation of the energy conservation equation in 
which the total energy of the continuum is taken to 
be the sum of an ‘internal’ energy 17, and kinetic energy 
fp,vf. The mixture total energy is then 

1 
e=Ce,=CpI Q,+jv’ . 

I( ) 
(40) 

But v, = v + 9,, and C,p,?, = Z, j, = 0. Hence 

e = Xp,c, +fpv’ +$p,$. (41) 

The last term is the kinetic energy of diffusion that 
was discussed in Section 3. Thus, in terms of the kin- 
etic theory model of a gas mixture and equation (14), 

a, = uy = ;pi7 (42) 

where ci is the peculiar velocity relative to the species 
absolute velocity. As was discussed in Section 3, UT is 
not the usual thermodynamic (equilibrium) species 
internal energy; portion has been subtracted out as 
kinetic energy of diffusion. 

Similar considerations apply to other properties. 
The partial pressure pi is not the thermodynamic 
pressure because portion has been subtracted out as a 
contribution to the diffusion pressure. The viscous 
stress tensor Ti does not sum to the usual mixture 
counterpart ; a portion is missing because it is included 
in the diffusion velocity terms. 

Of perhaps greater concern is that the partial 
properties cannot be identified without a term by term 
comparison of the resulting conservation equations 
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with the corresponding equations obtained from kin- 
etic theory, as was done by Williams [4]. The coexist- 
ing-continua model is, in a sense, redundant since 
it adds nothing new. There is little meaning to the 
statement by Williams [4] that there is an ‘equivalence 
of the continuum theory and kinetic theory results.’ 

regarded the diffusion stresses and kinetic energy of 
diffusion as additions to the usual viscous stresses and 
internal energy, even though his only real concern was 
with ordinary diffusion. 

4.4.2. The total energy equations. The issue here is 
that the numerous diffusion velocity terms need not 
be separated out in most applications ; as will be dem- 
onstrated in Section 5.1. Also, these terms are often 
physically meaningless. 

4.4.3. The ‘thermal’ energy equation. In the pre- 
ceding development a continuum mechanical energy 
equation, equation (35), was obtained that was con- 
sistent with the postulate of a continuum velocity v,. A 
continuum ‘thermal’ energy equation, equation (39), 
was obtained in the usual way for pure fluids by sub- 
tracting the mechanical energy equation from the total 
energy equation. The mixture ‘thermal’ energy equa- 
tion (39), was then obtained by summation. The prob- 
lem with equation (39) is that it does not express 
conservation of all the thermal energy of the mixture. 
A portion has been associated with ordinary diffusion 
and subtracted out by including it in the kinetic energy 
of each continuum. Thus equation (39) has a rather 
obscure physical meaning, and it is doubtful if it is of 
any practical use. 

4.5. Comments on relevant literature 
It is fair to say that the literature on coexisting- 

continua models and their use contains much that is 
confusing and dilficult to reconcile with a consistent 
theory. Some examples follow. 

4.5.3. F. A. Williams [4]. In his text on combustion 
theory, Williams presents a detailed derivation of the 
conservation equations using a coexisting-continua 
model. By comparing his results with Chapman- 
Enskog kinetic theory definitions of stresses, energy 
and heat flux, he identifies the various continuum 
partial properties that were defined for his model. (As 
was done in Section 4.4.1 for the kinetic energy of 
diffusion.) However, he does not examine the utility 
of his equations with respect to ordinary diffusion 
on one hand and forced diffusion on the other. For 
example, he concludes his discussion of the diffusion 
terms with the statement, “therefore, it has not been 
fruitful to study the diffusion terms which, in a sense, 
may be viewed as artifacts of the continuum 
approach.” If ordinary diffusion is of concern, as is 
the case in combustion theory, these terms are, indeed, 
artifacts as has been demonstrated in Section 4.4. 
However, if forced diffusion is a concern, then the 
diffusion terms associated with forced diffusion are 
distinct momentum fluxes and energy that should be 
kept separate from those associated with the thermal 
motion of molecules. In situations where these terms 
cannot be neglected they must be kept separate if the 
equations are to have practical utility. Indeed, it can 
be said that not having separate terms for forced 
diffusion is an artifact of the Chapman-Enskog kin- 
etic theory resulting from the definition of peculiar 
velocity employed. 

4.5.1. L. Lees [7]. In his seminal paper on boundary 
layers with mass transfer, Lees presents a scaling of 
the diffusion stresses for a boundary-layer flow by 
comparing z”,. to the “ordinary stress” @~/ay: this 
ratio is found to be order l/ReL Sc2, where L is a 
characteristic length in the flow direction, and hence 
7x9, is negligible in boundary layers. He also states that 
the ratio of the kinetic energy of diffusion to the ‘com- 
plete enthalpy’ is of the same order. In a footnote he 
states that Baron [8] does not make it clear that the 
diffusion stress tensor exists whenever concentration 
gradients exist in a mixture. It appears that Lees 
regarded diffusion stresses and kinetic energy of 
diffusion as additions to the usual stresses and internal 
energy. In his analysis, which considered only ordi- 
nary diffusion, his scaling was unnecessary since his 
use of the ‘usual’ stress tensor and internal energy is 
exact. 

A related and troublesome issue concerns the 
‘thermal’ energy equation. The derivation given by 
Williams differs from that given in Section 4.3. Wil- 
liams does not actually write down continuum 
momentum and total energy equations. Rather, he 
immediately writes down mixture momentum and 
total energy equations in terms of summations where 
appropriate. In this way he avoids having to specify 
continua interaction terms that sum to zero. Then, in 
order to obtain a mixture ‘thermal’ energy equation, 
he forms the scalar product of the mass average vel- 
ocity and the mixture momentum equation and sub- 
tracts the results from the mixture total energy equa- 
tion. His result is 

p$ = PV*v-V*q+t:Vv+Zji*f, (43) 

4.5.2. S. S. Penner [9]. In his monograph Chemical where u, P, q and z are defined following Chapman- 
Reactions in Flow Systems, Penner presents momen- Enskog kinetic theory. At first sight this equation is 
tum and energy Iconservation equations that he attri- more satisfactory than the form derived as equation 
butes to von Karman. The stress terms in his momen- (39) in Section 4.3, because all the energy associated 
tum equation are V *(T” + z”), where the ‘viscous stress with the thermal motion of the molecules is contained 
tensor’ 5” is defined in terms of velocity gradients in in this equation : the portion associated with ordinary 
the usual way. His energy equation is written in terms diffusion has not been subtracted out. As will be 
of u + K.E.” where u is the ‘specific internal energy of shown later, this equation is appropriate if species 
the gas mixture’. Like Lees, it is clear that Penner dependent external forces are absent. In general, how- 
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ever, equation (43) is unsatisfactory because it also 
contains total energy conservation associated with 
forced diffusion ; in particular it contains a work term 
Xji*f,. We do not see work terms in the thermal energy 
equation for a pure fluid because mechanical work 
can only affect thermal energy via a reversible heating 
by compression, or by an irreversible viscous dissi- 
pation. Bird, Stewart and Lightfoot [lo] have a clear 
presentation of these issues for a pure fluid. The source 
of the work term is as follows. In the total energy 
equation the work done by external forces is Zptfi - v, ; 
however, in taking the scalar product of the mass 
average velocity and the mixture momentum equation 
the term v * Zpifi is obtained. Clearly the latter term is 
not the true work because the point of application of 
f, does not follow v. The difference of the two terms 
appears as a residual in the Williams thermal-energy 
equation. 

Of course, the Williams equation is mathematically 
correct ; but the relevant issues are whether it is physi- 
cally meaningful and of practical use. Actually, a 
‘thermal’ energy equation of similar form is also given 
in most kinetic theory derivations of the conservation 
equations from the Boltzmann equation, for example, 
by Hirschfelder, Curtiss and Bird [3], as will be dis- 
cussed in Section 4.5.9. 

4.5.4. de Groof and Mazur [1 I]. In their treatise on 
nonequilibrium thermodynamics, these authors define 
the internal energy of a mixture as the total energy 
minus the barycentric kinetic energy (ignoring the 
potential energy that they included). Since 

their internal energy, denoted U+ here, is 

u+ = 27+Z~rn,z?j (44) 

Then, referring to their Section 3.4, equation (32), 
they define a ‘different’ internal energy u* 

u* = u+ -Z irn&if = a. (45) 

They state “since the internal energy should only con- 
tain contributions from thermal agitation and the 
short range molecular interactions, the quantity U* 
has perhaps more right to this name than the quantity 
u+” and note that the Gibbs relation is in terms of u*. 
However, as demonstrated in Section 4.4.1, u* = z? is 
missing a portion of the thermal internal energy that 
was artificially separated out as a kinetic energy of 
ordinary diffusion in using a coexisting-continua for- 
mulation. As a result, the validity of the ensuing devel- 
opment of the entropy balance equation is suspect. 

4.5.5. Truesdell and Noll [12]. These authors 
employ continuum partial properties. A partial stress 
bi is defined, and their equation (215.1) gives the ‘total’ 
stress as 

0 = CB,+rn. (46) 

Similarly, they define a partial internal energy li, and 
their equation (243.1) gives the ‘total’ energy as the 
sum of the partial internal energies plus the kinetic 
energies of diffusion, i.e., the same as U+ defined by 
de Groot and Mazur ; from equation (44), 

1 U+ = Q+C;m$f 

The internal energy u+ equals ucc of kinetic theory 
[see equation (15)], and equals the thermodynamic 
internal energy if ordinary diffusion is the only 
diffusion mechanism present. Like Williams [4], these 
authors are careful to reconcile their property defi- 
nitions with Chapman-Enskog kinetic theory. 

4.5.6. Slattery [13]. Slattery’s coexisting continua 
model defines the total energy of the mixture as 

where u is the thermodynamic internal energy, and 
then obtains the left side of the ‘thermal’ energy equa- 
tion as p(D/Dt)(u+Z,~mifij). He asserts that the kin- 
etic energy of diffusion is expected to be small com- 
pared to u and ‘we are prepared to neglect it’. He 
subsequently refers to Truesdell and No11 [ 121 and de 
Groot and Mazur [ll] to note that a new internal 
energy ut can be defined as 

to obtain the thermal energy equation in terms of ut, 
but that ‘unfortunately, this simplification disappears 
when we use the fundamental constitutive equation 
for a thermodynamically homogeneous material 
which requires that u is not an explicit function of the 
motion of the material.’ 

Slattery has misquoted refs. [l l] and [12], neither 
of whom define an internal energy u+. In fact, for 
ordinary diffusion only, U+ of de Groot and Mazur 
[I l] is equal to u, and 

U+ = u+ +C~rn& (49) 

that is, the kinetic energy of diffusion has been 
accounted for twice. Truesdell and No11 [12] only 
define U+ [see equation (44)J. 

The error in Slattery’s formulation is a common 
one, namely, a failure to recognize that, if a continuum 
is defined to have a velocity vi that includes the ordi- 
nary diffusion velocity, then the internal energy of 
the continuum cannot be the usual thermodynamic 
internal energy. This error is similar to the one made 
by Lees and by Penner, who viewed the diffusion 
stresses to be in addition to the usual stress tensor. 

4.5.7. L. C. Woods [6]. In Chapter 9 of his text 
Thermodynamics of Fluid Systems, Woods has a very 
comprehensive development of the coexisting-con- 
tinua model that is followed quite closely in Sections 
4.24.4 of this paper. However, like Slattery (see Sec- 
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tion 4.5.6), Woods takes u”, = ui, thereby failing to 
recognize that a portion of the thermodynamic 
internal energy has been artificially separated out by 
including the ordinary diffusion velocity as a com- 
ponent of each continuum velocity. Similarly, he takes 
pi = Pi. His comments on the quadratic diffusion 
terms include the following : 

(1) 

(2) 

(3) 

“The diffusion pressure is often included as part 
of the total pre:ssure, but to do this means a depar- 
ture from the purely thermodynamic significance 
of pressure.” 
“It is misleading to describe U+ as being the 
‘internal energy’, as the application of either heat 
or work affects u and X,, $z$: differently. . . the 
concepts of heat and work are blurred in mixture 
theory.” 
“The one-fluid model is practical only when the 
quadratic terms.. involving the diffusion vel- 
ocity are negligible.” 

It is relevant to note that a primary concern of 
Woods was to have a formulation that was practical 
for plasma transport problems, for which forced 
diffusion is usually the dominant mode of diffusion. 
Thus he ensured that the quadratic terms associated 
with the forced diffusion velocity are kept separate ; 
indeed, if ordinary diffusion is negligible, his for- 
mulation is quite satisfactory. It is for the same reason 
that Woods, in his text An Introduction to the Kinetic 
Theory of Gases and Magnetoplasmas [5], develops a 
kinetic theory formulation that differs from the tra- 
ditional Chapmarl-Enskog theory in defining a mol- 
ecule peculiar velocity relative to the species absolute 
velocity rather than the mass average velocity (as 
described in Section 3 of this paper). This kinetic 
theory formulation yields conservation equations of 
identical form to his coexisting-continua formulation. 

4.5.8. Hirschelder, Curtiss and Bird [3]. In their text 
The Molecular Theory of Gases and Liquids the 
authors present a widely used treatment of the Chap- 
man-Enskog kinetic theory of gases. Their con- 
servation equations are identical to those used by Wil- 
liams (see Section 4.5.2) to reconcile his coexisting 
continua model with kinetic theory. Their ‘thermal’ 
energy equation, equation (7.2-49), is in terms of an 
internal energy for monatomic molecules defined as 

and thus combin’es the forced diffusion motion with 
the thermal motion. A corresponding ‘kinetic theory’ 
temperature is detined, and equation (7.2-49) is rewrit- 
ten in terms of this temperature as equation (7.2-50). 
This form of the energy equation has already been 
commented on in Section 4.5.2 : it is mathematically 
correct but of doubtful practical utility. 

Subsequently, in Section 7.6 they extend their 
energy equation, equation (7.2-49) to a polyatomic 
reacting gas mixture by replacing ufr with the ‘ther- 

modynamic internal energy’ u = Zi+uj, to obtain 
equation (7.6-7). In so doing they replace a kinetic 
theory definition of internal energy with the ther- 
modynamic definition, without comment. Their step is 
valid only if the kinetic energy associated with forced 
diffusion is negligible, and then, to the same order 
they should have deleted the work term Ziji*fi from 
the equation. In Chapter 11 they rewrite equation (7.6- 
7) as equation (11.1-4) and add thermal and caloric 
equations of state, 

P= P(V,T) (51) 

u = u(V, T). (52) 

Again no mention is made of replacing kinetic theory 
definitions of P and u with thermodynamic definitions, 
and the work term remains in the equation. In the 
various applications that follow, P and u (or T) in the 
conservation equations are taken to be ther- 
modynamic values, and, since none of the applications 
involve external forces (and, indeed, do not involve 
thermal or pressure diffusion), the equations used are 
correct. But their inconsistent use of internal energy 
definitions has been a possible source of the same 
inconsistency in derivative works, for example in the 
text by Bird, Stewart and Lightfoot [lo]. 

4.5.9. Bird, Stewart and Lightfoot [lo]. In their 
widely used text Transport Phenomena these authors 
present various forms of the energy conservation 
equation in Table 18.3.-l. For example, their equation 
(10) reads 

YE= -V-q-((I:VV)+Cj;f,. (53) 

Nowhere in this text is u defined to be other than 
the thermodynamic internal energy and there is no 
mention of a ‘kinetic theory’ temperature. Thus, to 
the order of the approximation used, namely uf = u, 
the term &j; f, should not appear in this equation, 
and in the subsequent forms that are in terms of ther- 
modynamic temperature. It is particularly trouble- 
some to see a work term in a thermal energy equation 
since, as mentioned before, mechanical work can only 
affect thermal energy via a reversible heating by com- 
pression or an irreversible viscous dissipation. 

4.5.10. Curtiss and Bird [14]. In a very recent paper 
dealing with multicomponent diffusion in polymeric 
liquids, these authors have an appendix devoted to 
clarifying the nature of the partial stresses that must 
be defined when using a coexisting-continua model to 
derive a species momentum equation. However, like 
Williams [4], no attempt is made to distinguish 
between ordinary and forced diffusion. 

5. PROPOSED CONTINUUM MODELS FOR GAS 
MIXTURES 

In Section 4 it was shown that momentum and 
energy conservation equations based on coexisting- 
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continua models have serious shortcomings. The 
difficulties are essentially due to an attempt to have 
general equations that apply when both ordinary and 
forced diffusion are present. However, in most heat 
and mass transfer problems there are no species 
dependent external forces, and hence forced diffusion 
is absent. Thus, in Section 5.1 a continuum model is 
presented for these situations. When forced diffusion 
is present, ordinary diffusion is often negligible. In 
Section 5.2 simplified coexisting-continua con- 
servation equations are given for such situations. 

5.1. A continuum modelfor nonionizedgus mixtures 
In this model the gas mixture is modeled as a single 

continuum with the following definitions of properties 
and fluxes : 

Density p = Zip,. Pressure P = &P, (usual ther- 
modynamics definition). Internal energy u = &m,u, 
(usual thermodynamics definition). Species pro- 
duction rate ii. Species absolute mass flux n, = p,v+ j,, 
where v = ( l/p)Znj is the mass average velocity, ji = d- 
iffusion flux relative to v. Stress tensor g = -PI+ t. 
Energy flux relative to the mass average velocity q. 
Gravitational acceleration g. 

The flux laws are obtained from the Chapman- 
Enskog kinetic theory of gases 

j, = c m,m,D,,[Vx, + (x, - m,)V In P] - D,rV In T 

(54) 

Z = /4(VV+(b’)T)+($-K)(V’V)6 (55) 

q = qC+~j,h,+qDC = -kVT+~j,h, 

(56) 

where p and k are the mixture viscosity and thermal 
conductivity. Notice that there is no tilde overscores; 
all partial properties are the same as those defined for 
a pure gas; all mixture properties are the same as 
those defined for a uniform mixture. 

Consistent with the statement of the principle of 
conservation of species given in Section 4.1, the result- 
ing equation is now 

(57) 

Substituting ni = pjv + j, gives 

Since we have postulated a single continuum, the deri- 
vations of the momentum and energy conservation 
equations are identical to those for a pure fluid as 
presented in standard texts. The results are, for 
momentum, 

$w+v.pvv = -vp+v*r+pg (59) 

for total energy, 

= -V*q+V*[v*a]+pg*v (60) 

and for thermal energy, 

Dh DP 
pot = E -V*q+,u@. (61) 

In these equations p and k are uniform mixture 
properties, while j and q are given by equations (54) 
and (56), respectively. 

In many situations pressure and thermal diffusion 
are negligible and are discarded leaving ordinary 
diffusion as the only mechanism of diffusion. Then 
the above equations are exact in the sense that no 
effects due to ordinary diffusion have been omitted. If 
pressure or thermal diffusion are included then the 
equations are approximate in that diffusion stresses 
and kinetic energy associated with pressure and ther- 
mal diffusion are then ignored. However, the drift 
velocities due to pressure and thermal diffusion are 
usually of third order, and the resulting stresses and 
energy associated with these velocities are of an even 
lower order. Thus, deleting such terms will invariably 
be an approximation of no concern. Indeed, this issue 
is always ignored when using conservation equations 
derived from the kinetic theory of gases and the Boltz- 
mann equation. 

5.2. A continuum model for forced diffusion 
Forced diffusion drift velocities in ionized gas mix- 

tures can be very large. As noted in Section 2, cad- 
mium ions in a helium-cadmium laser have a drift 
velocity of N 3000 m s-‘. Even though only about 1% 
of the cadmium molecules present are ionized at any 
given instant of time, the resulting forced diffusion 
flux of cadmium is also large. It is then often possible 
to neglect ordinary diffusion (and pressure and ther- 
mal diffusion), and it is useful to have appropriate 
and simple momentum and energy conservation equa- 
tions. We return to the coexisting-continua model of 
Section 4, with vi = v+BpD and remove all the tilde 
overscores. The species equation is then 

g +V*p,(v+9y) = i, (62) 

or 

(63) 

The mixture momentum equation from equation (30) 
is 
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/I% = -VP+V.7-V.Cp,B~DB~D+Cpifi (64) 
i I 

and from equation (39) the mixture thermal energy 
equation is 

where 7 and q are defined in equations (55) and (56) 
,and ,LL@ = -T .Vv, ,umFD = -C,Z;VVZ~~. We see in 
equation (64) diffusion stresses associated with forced 
diffusion, and in equation (65) terms related to heat of 
compression and viscous dissipation associated with 
forced diffusion. 

These equations can be used to scale the forced 
diffusion quadratic terms in order to see whether they 
are negligible. And, for example, equation (64) can be 
used to investigate whether the diffusion stresses play 
a role in establishing the axial pressure gradient in a 
helium-cadmium laser (though, related phenomena, 
such as the force imbalance associated with the con- 
tinuous generation of ions, appear to be of greater 
significance [15, 161). 

6. THE ORDINARY DIFFUSION VELOCITY 

REVISITED 

In using continuum models for mass transfer analy- 
sis we routinely apply a boundary condition of zero 
concentration as a good approximation to the actual 
physical condition : the diffusion controlled reactions 
mentioned in Section 2.1 are examples. As a result, 
the diffusion velocity for ordinary diffusion has a 
singularity at the boundary. For this reason we solve 
the species conservation equation in terms of fluxes, 
not velocities, in order to avoid having to deal with the 
singularity. However, in the momentum and energy 
conservation equa Lions derived from the coexisting- 
continua model, such singularities cannot be so easily 
avoided. We will use the one-dimensional diffusion 
problem of Section 2.1 as a simple example. The 
diffusion pressure PD defined by equation (32) and 
given by the diagonal components of 7D appearing in 
the momentum conservation equation, equation (3 l), 
has singular terms at z = 0, L. Hence, application of 
equation (31) as z + 0 and z + L is not straight- 
forward. Similarly, equation (37) contains the term 
V. p(C, $n,v^,%,) that is singular at z = 0, L. As a result 
this equation is of questionable practical use. 

This singular behavior is even more troublesome in 
its implications for the definition of the partial internal 
energy u”. When only ordinary diffusion is present the 
thermodynamic internal energy u is 

Again referring to the one-dimensional diffusion prob- 
lem of Section 2.1, u is constant and thus at z = 0, L 
where a i$ + co, D + - co! This awkward result is a 
feature of the continuum model. A check of the cor- 
responding molecular model shows that the con- 
centration jump at the boundaries precludes 9, becom- 
ing large enough for a similar anomaly to occur. 

As mentioned in Section 2.1, we really should not 
be concerned by this anomalous behavior of the quad- 
ratic diffusion velocity terms because, in the con- 
tinuum model, the diffusion velocity is an artificial 
one, obtained by dividing the diffusion flux j, by a 
density pi, which has no relevance to the physical 
phenomenon (it could be argued that j,/p gives a more 
useful velocity). Physically meaningful momentum 
fluxes or kinetic energy cannot be associated with the 
ordinary diffusion velocity. In this sense the sugges- 
tion that the velocity is artificial or fictitious seems 
appropriate, though some might argue that this is a 
question of semantics. 

In closing it is of interest to comment on a related 
situation, that of diffusion of small aerosol particles. 
Brownian diffusion is described by 

Yp = -LY&VN,. (67) 

In most situations, capture of particles by surfaces is 
very efficient and the usual boundary condition 
applied to particle conservation equations at surfaces 
is A’“, + 0. If a diffusion velocity is defined for par- 
ticles by the relation 

then VP + cc at the surface. The idea of the particle 
velocity becoming singular as it approaches a surface 
is unacceptable, and for this reason the concept of a 
diffusion velocity for Brownian diffusion is a not used 
in the aerosol literature. On the other hand, thermal 
diffusion of particles (called thermophoresis) is 
described by a relation 

jTD = J 
P 

+TD 
PP (69) 

where ?:D is independent of particle concentration 
[ 171. Thus, it is customary practice in the aerosol 
literature to include thermophoresis with convection 
on the left side of the particle conservation equation, 
and to have Brownian diffusion on the right side of 
the equation. Similarly, one could agree that forced 
diffusion in gas mixtures should be included with the 
convection terms on the left side of the species con- 
servation equation, rather than with ordinary 
diffusion on the right side of the equation. 

(1) 

(2) 

7. CONCLUSIONS 

The diffusion velocity for ordinary diffusion 
requires careful use : it is perhaps best viewed as 
an artificial velocity. 
The kinetic energy of diffusion associated with 
ordinary diffusion is portion of the ther- 
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(3) 

(4) 

(5) 

(6) 

modynamic internal energy: it is not additional 
energy. Similarly the diffusion pressure is a por- 
tion of the thermodynamic pressure: there is no 

3, 

additional pressure exerted in a gas mixture due 
to ordinary diffusion. 4. 

The kinetic energy of diffusion and diffusion pres- 
sure associated with forced diffusion are in 

5. 

addition to their thermodynamic counterparts, 
and should be kept separate. 6. 

Coexisting-continua models yield momentum 7. 
and energy conservation equations that have no 
intrinsic value, since the kinetic theory of gases is 
required to identify many of the terms that 
appear. Furthermore, in their usual form they 8. 
have little practical utility. 
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